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Using the properties of the Jordan curve, the following theorem on the 
heteroclinic tangency in orientation-preserving two-dimensional maps is proved: 
Let Tu: 1124112 be a one-parameter family of C 1 diffeomorphisms and J =  
Det DT~, be such that 0<J~< 1 or 1 ~<J< oo. Let W~ be the unstable manifold 
of a hyperbolic n-cycle and W m the stable manifold of a hyperbolic m-cycle. 
Suppose that for ~ < #c, W~ and W m have no common points, and that for 

> go, W] and W~ have a transversal heteroclinic point. Then at # = #c, W," 
and W~ are in the first asymptotic heteroclinic tangency except for the following 
three cases: (1) n = m; both cycles are without reflection. (2) m = 2n; the n- and 
m-cycles are with and without reflection, respectively; (3) n =2m; the n- and 
m-cycles are without and with reflection, respectively. 

KEY WORDS: Heteroclinic tangency; orientation-preserving map; hyper- 
bolic point; unstable manifold; stable manifold; Jordan curve. 

1. I N T R O D U C T I O N  A N D  A T H E O R E M  

T h e  i n v e s t i g a t i o n  of  i n v a r i a n t  m a n i f o l d s  is the shor tes t  w a y  to a p p r o a c h  

the  hea r t  of  d y n a m i c a l  systems.  Recen t ly ,  the re  has  been  m u c h  w o r k  on  

i n v a r i a n t  m a n i f o l d s  us ing  va r i ous  mode l s .  (1-13) T h e  h o m o c l i n i c  o r  

he t e roc l in i c  t a n g e n c y  b e t w e e n  s table  a n d  u n s t a b l e  m a n i f o l d s  gives rise to  

v a r i o u s  p h e n o m e n a .  (8,12) In  ref. 13 we s tud ied  the  m e c h a n i s m  of  

he t e roc l in i c  t a n g e n c y  by  us ing  a p a r t i c u l a r  k i n d  of  t w o - d i m e n s i o n a l  map .  

I t  was  s h o w n  tha t  the  ex is tence  o f  he t e roc l in i c  t a n g e n c y  in the  usua l  sense 
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is not obvious and evidently relies on the topology of stable and unstable 
manifolds and the properties of mapping functions. In this paper, we 
consider the first heteroclinic tangency between stable and unstable 
manifolds of any two hyperbolic points and show that the occurrence of 
heteroclinic tangency in the usual sense is rather exceptional. The definition 
of the first heteroclinic tangency is given below. 

Let us consider a one-parameter family of two-dimensional C 1 
diffeomorphisms 

T~: R2--+ R 2 (1.1) 

where # is a bifurcation parameter. The Jacobian determinant J = Det D T u  

is assumed to satisfy 

0 < J ~ < l  or l ~ < J < ~  (1.2) 

Since the Jacobian is positive, the map T, is orientation preserving. (1'2) 
Hereafter T~ is abbreviated as T. Let us denote by T n the n-folded 

iteration of the map (n = _+1, _+2,..). We call a periodic orbit of period n 
an n-cycle. Let q~ and q2 be hyperbolic points. A point P is called a 
heteroclinic point if T " P  ~ q l (n  ~ ~ ) and T n p  ~ q~(n ~ oo).(14) 

Fig. 1. 

(a) 

W s 

r W u 

(~) / ~ ~  

- ~ W u / -  
Possible heteroclinic intersections. The intersection point is indicated by a solid circle. 
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Now let us change the parameter # continuously and suppose that for 
/~ < ~t~, the unstable manifold W,~ from a point of a hyperbolic n-cycle and 
the stable manifold W m from a point of a hyperbolic m-cycle have no 
common points, and that for #>/~c,  W~ and W m have a transverse 
heteroclinic point (see Fig. la). We say that at #--#~,  W~ and W m are in 
the first heteroclinic tangency. Note that there cannot be a nontransversal 
heteroclinic point at ~ = #~. since it cannot be removed by a small change 
of #. As Newhouse (8) showed in the homoclinic case, there can be a lot of 
tangency points once stable and unstable manifolds intersect transversely. 
These tangencies are not the first ones. 

Let us classify the first heteroclinic tangency. Let [A] denote the 
closure of a set A and ~ A =  I-A] - A .  If W E and W m are tangent to each 
other at some point but never intersect at any point, we say that they are 
in the first direct heteroclinic tangency. We say that W~, and W m are in the 
first asymptotic heteroclinic tangency if they have no common points, 
whereas [W~,] and EWe] have common points. Then the first heteroclinic 
tangency is divided into four classes. 

(he-l)  

(he-2) 

(he-3) 

(he-4) 

0W~c~wm # ~  and w nawT=w nw7= . 
W,]c~ ~3wm r ~ and aw2 wT=w  w7= . 

n n r r t  n m n QW, c ~ 0 w m # ~  and ~ W , c ~ W ,  - W ~ n 0 W ~  = W ,  n W T ' = ~ .  

A similar situation for the first homoclinic tangency was considered by 
Marl6. (9) He called common points almost homoclinic points. But he did 
not consider the case (he-4). 

The main purpose of this paper is to give the following theorem on the 
first heteroclinic tangency. 

Theorem. Let T~: R 2 ~ R  2 be a one-parameter family of C 1 
diffeomorphisms and J =  Det DT~, be such that 0 < J~< 1 or 1 ~< J <  ~ .  Let 
W E be the unstable manifold of a hyperbolic n-cycle and W m the stable 
manifold of a hyperbolic m-cycle. Suppose that for # </~c, W~ and Ws m 
have no common points, and that for/~ > #c, W~ and W m have a trans- 
versal heteroclinic point. Then at p = p c ,  W~ and W~ are in the first 
asymptotic heteroclinic tangency except for the following three cases: 

(1) n = m. Both cycles are without reflection. 

(2) m =2n. The n- and m-cycles are with and without reflection, 
respectively. 

(3) n=2m. The n- and m-cycles are without and with reflection, 
respectively. 

8 2 2 / 5 9 / 5 - 6 - 1 4  
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In these three cases, W E and W m can be in the first direct heteroclinic 
tangency. 

Let us call above three cases the exceptional cases. 
Examples of asymptotic tangency are illustrated in ref. 13. We believe 

that the ~3W~ is closely related to the strange attractor in dissipative 
systems. 3 Detailed discussions are given elsewhere. (15) 

The orientation preservation of the map and the Jordan curve theorem 
play essential roles in the proof. The latter is very powerful when we con- 
sider the topological behavior of invariant curves or study the coexistence 
of periodic p o i n t s .  116'17~ The properties of the Jordan curve are discussed in 
ref. 18. In Section 2, notation is introduced and the proof of the theorem is 
obtained. 

2. PROOF OF THE T H E O R E M  

2.1. Or ientat ion-Preserv ing Map  

First we review the concept of orientation preservation (see Chapter 1 
in ref. 2). For  a hyperbolic point with positive Jacobian, there are two cases 
of orientation preservation: 

Case-OP 1: 

Case-OP2: 

21>1>)~2>0 

21< - 1 < 2 2 < 0  

where 2122 > 0. 
A hyperbolic point with case-OP1 (-OP2) is called a hyperbolic point 

without (with) reflection. When we draw a picture of the tangency between 
the unstable and stable manifolds, we take into account the difference of 
the two cases. In Fig. 2 an example is illustrated. When two manifolds are 
tangent at the point P as shown in Fig. 2a, they must be tangent at the 
point TP as shown in Fig. 2b (case-OP1) or Fig. 2c (case-OP2). 

2.2. Notat ion on Stable and Unstable Mani fo lds  and on 
Hyperbol ic points 

Here we introduce notation on manifolds and hyperbolic points. 
W~(opl): The unstable manifold of a point of a hyperbolic n-cycle 

with OP1. 

3 This statement is our conjecture, not proved rigorously. Eckmann and Ruelle (2~ state that 
the strange attractor is the union of unstable manifolds. 
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Fig. 2. Examples of the unstable (W~) and stable (W,) manifolds tangent to each other with 
the orientation preservation. (a) They are tangent at P. A hyperbolic fixed point is shown 
by o. (b) They are tangent at TP for the ease OP1. (c) They are tangent at TP for the case 
OP2. 

W~(op2): The unstable manifold of a point of a hyperbolic n-cycle 
with OP2. 

W~(opl):  The stable manifold of a point of a hyperbolic n-cycle with 
OP1, 

W~'(op2): The stable manifold of a point of a hyperbolic n-cycle with 
OP2. 

W u: The abbreviated name of unstable manifolds. 
Ws: The abbreviated name of stable manifolds. 
ui: The hyperbolic points from which W~(opl  or op2) comes 

(1 :<<.i<~n) and u i =  T i - l u  1 and U n + l  = b / l  , 

si: The hyperbolic points to which W~(opl  or op2) tends (1 ~< i<~n) 
and s i =  Ti - l s l  and sn+l =Sl .  

2.3. A Lernma on the  First D i rect  T a n g e n c y  

In this subsection, we give a lemma required in the proof  of the 
theorem. Let us introduce an orientation on both stable and unstable 
manifolds as that to which points move upon iteration of T. 

k e m m a .  The orientations of the stable and unstable manifolds 
coincide at the first direct homoclinic and heteroclinic tangency points. 
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Proof. (1) Case of the first direct  homocl in ic  tangency.  
Let  us cons ider  the o r ien ta t ion-prese rv ing  case. Assume the cont ra ry ,  

tha t  the o r ien ta t ions  of the s table  and  uns table  manifolds  do not  coincide. 
Then  the s i tua t ion  can be i l lus t ra ted  as in Fig. 3a, where q, is a po in t  of 
a hyperbo l i c  n-cycle, and  the W ,  and  Wu are the s table and  unstable  
manifolds.  A J o r d a n  curve F is cons t ruc ted  by  the Arc ql P on W ,  and  
Arc Pq~ on Ws. The o r ien ta t ion  of r is shown by arrows.  The  ar rows a and  
b are on  the different sides of F.  O n  the o ther  hand,  the arc of W ,  a r o u n d  
P is m a p p e d  to the arc  of  W ,  a r o u n d  T~P by T ~. Then the arc  of W~ 
connec t ing  the ar rows a and  b mus t  intersect  the Arc Pql of W~ since W ,  
canno t  intersect  itself. Thus,  there exists at  least  one intersect ion po in t  of 
W~ and Wu,  which is a cont radic t ion .  

F o r  the or ien ta t ion- revers ing  case, the same a rgumen t  applies using 2n 
ins tead  of  n. 

(a) 
F 

(b) 

p  ,Tk 0 : t ~ - - q l  : 
Vx/S --~> ( T2kp 

Fig. 3. (a) The first direct homoclinic tangency where qt is a point of a hyperbolic n-cycle 
(see text). (b) The first direct heteroclinic tangency where ql, q2, respectively, are points of 
hyperbolic m- and n-cycles and k is the least common multiple of n and m. The Jordan curve 
F is constructed by Arc PTkP of W, and Arc TkPP of Ws, and the orientation of F is shown 
by the arrows. The arrows a and b are on different sides of F. The arc connecting TkP and 
T2kp must intersect F. 
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,(2) Case of the first direct heteroclinic tangency. 
The situation is illustrated in Fig. 3b. The proof is similar to the above. 

The orientation-reversing case can be treated using 2k instead of k. 
Then the lemma is proved. | 

2.,4. P roof  of  t h e  T h e o r e m  

First we give two remarks: 

Remark  1. When the unstable manifold W~,(opl) and the stable 
manifold Wm(opl) are tangent at the point P, these manifolds are tangent 
at the sequential points T+-ikP, where k-- LCM(n, m) is the least common 
multiple of n and m, and i is a positive integer. When W~'(opl) and 

" 2 Wm(op2) [W,(op ) and Wm(opl)] are tangent at P, two manifolds 
are tangent at the sequential points T+-ikP, where k=LCM(n, 2m) 
[ k =  LCM(2n, m)]. When W,~(op2) and Wm(op2) is tangent at P, two 
manifolds are tangent at the sequential points T+-ikP, where k =  
LCM(2n, 2m). These are obvious consequence of the map T. 

Remark  2. From the lemma given in Section 2.3, the orientations of 
stable and unstable manifolds coincide at P, and then the cases that the 
orientations of such manifolds are opposite each other at P are omitted in 
the proof. 

We divide the proof into eight cases as shown in Table I according to 

Table I. Situations of Heterocl inic Tangeney f o r  
Orientation-Preserving Cases 

w," 

OP1 OP2 

wE 
OP1 (1) n < m  (2) n < m  

(1') n = m  (2') n = m  

OP2 (3) n < m  (4) n < m  

(3') n = m  (4') n = m  

w~ 

OP1 OP2 

w," OP1 (5) n < r n  (6) n < m  

OP2 (7) n < m  (8) n < m  
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the values of n and m, and also to the values of 21 and /~2' In each case, 
we assume that stable and unstable manifolds are tangent at some point 
and have no common intersection points. We derive a contradiction under 
this assumption. If a contradiction is not derived, then the first direct 
heteroclinic tangency may occur for the corresponding case. 

C a s e  1. Tangency between W~(opl)  and Wm(opl)  for m ~> n. Let us 
first consider the case m > n. According to the two remarks and the orienta- 
tion preservation of T, the situation is schematically illustrated in Fig. 4. 
The unstable manifold from Ul and the stable manifold from sl are tangent 
at P. The unstable manifold is tangent to the stable manifold from sn + 1 at 
T"P, and it is also tangent to the stable manifold from sl at TkP, where 
k=LCM(n,m). Note that the point Tn+~P is both on the unstable 
manifold and on the stable manifold from s, +1. 

A Jordan curve F is constructed by two arcs: Arc PTkP on the 
unstable manifold and Arc TkPP on the stable manifold from sl. The 
orientation on F is defined as that of the unstable manifold (shown by the 
dashed arrow). The arrows a and b are on different sides of F. The point 
T" + kp must be on the extension of the arrow b. The Jordan curve connect- 
ing the arow b and T~+kP (shown by the dotted curve) must intersect F. 
Since the unstable manifold cannot intersect itself, then Arc bT ~ +kp must 
intersect Arc TkPP on the manifold from Sl. Then a contradiction is 
derived for case 1 with m > n. 

w. / ", t 
~ .." 

"-,... ......... ..-"" 

Fig. 4. The unstable manifold from a point of a hyperbolic n-cycle and the stable manifold 
from a point of a hyperbolic m-cycle. The dashed curve shows the orientation on the Jordan 
curve F. For case 1 with m > n, u 1 (resp. s~) is a point of a hyperbolic n-cycle (resp. m-cycle) 
with OP1. For case 2 with m > n, Ul (resp. sl)  is a point of a hyperbolic n-cycle (resp. m-cycle) 
with OP1 (resp. OP2). 
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Consider the cases with n = m, which is case 1 in the theorem. In this 
case, the point T"P is equal to the point TkP. We cannot derive a 
contradiction by way of Fig. 4. 

We comment  on Fig. 4. We have drawn it for the case in which the 
arrow b is on the left of F. The case in which the arrow b is on the right 
of F is easily constructed by visualizing Fig. 4 from the back side of the 
paper. 

Case 2. Tangency between W~(opl)  and W~(op2)  for m>>.n. First 
consider the case with m > n. This case can be reduced to case 1 with m > n. 
In fact, a hyperbolic m-cycle with OP2 can be regarded as a hyperbolic 
2m-cycle with OP1, and hence Fig. 4 can be used with 2m instead of m. 

Next consider the case with n = m. In this case, we cannot use Fig. 4 
as it is, since k =  2n. We use another situation as shown in Fig. 5. The 
stable manifold bound for the right side of sl is tangent at the point TnP 
to the unstable manifold because n = m and the point sl is one of hyper- 
bolic points with OP2. Such a curve must intersect F constructed by two 
arcs: Arc PT2nP on the unstable manifold and Arc T2nPP on the stable 
manifold. The stable manifold cannot intersect itself and then Arc TnPst 
must intersect Arc PT2nP on the unstable manifold. A contradiction is 
derived for case 2. 

Case 3. Tangency between W~(op2) and W ~ ( o p l )  for m i> n. First 
consider the case with n-Cm and m 4 =2n. The situation is illustrated in 
Fig. 6. Here k =  LCM(2n, m), and the index N is the minimum positive 
integer satisfying N - 1  = 2 n ( m o d m ) .  The relations 2n<k and N r  1 are 

Wu 

~ ~ @ ~ T  2 N p / s1 

P--  ws 

U! 

Fig. 5. The situation of case 2 with m =n. 
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T2n i 

i 

U 1 ' 

Fig. 6. Fo r  case 3 with m > n, ul (resp. Sa) is a point  of a hyperbolic n-cycle (resp. m-cycle) 
with OP2 (resp. OP1).  Fo r  case 4 with m > n and m ~ 2n, u 1 (resp. s l )  is a point  of a hyper- 
bolic n-cycle (resp. m-cycle) with OP2.  

satisfied. In Fig. 6, Arc P T k P  on the unstable manifold and Arc T~PP on 
the stable manifold form a Jordan curve. The arrows a and b are on dif- 
ferent sides of F. The point T 2" § kp must be on the prolongation of the 
arrow b. The curve connecting the arrow b and T2"+kP (shown by the 
dotted curve) must intersect F. 

Next we consider the case with n = m. In this case, k = 2n. This situa- 
tion is shown in Fig. 7. The branch of the unstable manifold bound for the 

P ~  W s '  T n 

Fig. 7. The situation of case 3 with n = m. 
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bottom must be tangent at the point T"P to the stable manifold bound for 
sl. On the other hand, the branch of the unstable manifold bound for the 
top must be tangent to the stable manifold from sl at the point TRnp, and 
the point T2"P is between TnP and sl on the stable manifold. Then the arc 
of unstable manifold connecting P and T2np necessarily intersects F. 

,Consider the cases with m = 2n, In this case, k = 2n and then the point 
TI~P = T2np in Fig. 6. The point T"P in Fig. 7 is not on the stable manifold 
from sl when m = 2n. Then we cannot derive a contradiction using Fig. 7. 
This is the exceptional case 2 in the theorem. Using the 2n-folded map, the 
exceptional case 2 with m = 2n becomes the exceptional case 1 with m = n. 

,Case 4. Tangency between W~(op2) and Wm(op2) for m/> n. Using 
new notations n ' - - 2 n  and m ' =  2m, it seems that this case is formally the 
same as case 1. But we use the same approach as in the previous cases to 
derive a contradiction because there exists a particular case with n = m. The 
situation of case 4 with n = m is different from that of case 1. This will be 
discussed later. 

First we consider the case with m > n and m • 2n. Figure 5 applies, 
where ul is a point of a hyperbolic n-cycle with OP2 and s~ is a point of 
a hyperbolic m-cycle with OP2. Let k = LCM(2n, 2m) and the index N be 
the minimum positive integer satisfying N - 1  =2n(modm) .  Then they 
satisfy two relations: 2n < k and N-r 1. 

By a similar reasoning as in case 3, we can show that a curve connect- 
ing the arrow b and T"+~P (shown by the dotted curve) must intersect F. 

Next consider the cases with m = 2n. In this case, k = 4n and N =  1. 
The untable manifold bound for the top is tangent to the stable manifold 
from s~ bound for the left side at T4np (see Fig. 8). On the other hand, the 

Tanp~ 
Wu 

s I 

Fig. 8. The situation of case 4 with m = 2n. 
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stable manifold bound for the right side must be tangent to the unstable 
manifold bound for the top at T2~p. Then the curve connecting such two 
intersects F. 

Next consider the case with n = m. Figure 6 does not apply since the 
point T2"p coincides with TkP and N is equal to one. We apply the area- 
contracting, -expanding, or -preserving property of the maps. In Fig. 9 we 
show a typical example. The points T-3np, T ~P, TnP,... are on both the 
stable manifold bound for the right and the unstable manifold bound for 
the bottom. The points T-4np, T-2"P, P, T2"P .... are on both the stable 
manifold bound for the left and the unstable manifold bound for the top. 
A Jordan curve is constructed by two arcs: Arc Pul T"p on the unstable 
manifold and Arc Psl T~P on the stable manifold. Let D be the area of the 
region surrounded by the Jordan curve. If 0 < J < l ,  the area A of the 
hatched region increases as A/J 2n by T -2". Therefore, the area exceeds D 
by a finite backward iteration. For  J - -  1, the summed area of a finite back- 
ward iteration of the hatched region exceeds D. If 1 < J < m, the area B of 
the dotted region exceeds D by a finite forward iteration. In any case, a 
contradiction is derived. 

As a result, a contradiction is derived for case 4. 

C a s e  5. Tangency between W~'(opl) and W ~ ( o p l )  for m > n. 

C a s e  6. Tangency between W~(opl)  and Wm(op2) for rn >n .  

~~.T Wu 
p 

Wu Ws 

Fig. 9. The situation of case 4 with m = n, where A and B are the areas of the hatched and 
dotted regions, respectively. See text. 
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Case 7. Tangency between W~(op2) and Wm(op l )  for m > n. 

These cases reduce, respectively, to cases 1, 2, and 3 using T -1 instead 
of T. 

Case 8. Tangency  between WT(op2) and W~'(op2) for m > n. 

This case reduces to the case 5 with 2n and 2m instead of  n and m. 

2.5. M isce l laneous  C o m m e n t s  on the  T h e o r e m  

1. Can  we change the condit ion ~  or  l ~ < J < o o "  to 
"0 < J <  oc" in the theorem? The answer is no, because a condit ion on the 
m o n o t o n e  increase and decrease of the area under  the iteration of T is used 
in case 4 with n = m. 

2. The occurrence of first direct heteroclinic tangency can be 
excluded if there is an addit ional symmetry  in the maps, say the symmetry  
of  mapping  functions. In  general, the occurrence cannot  be excluded only 
by the Jo rdan  curve theorem. The theorem makes clear the situations in 
which the first direct heteroclinic tangency occurs. 

3. The theorem on the heteroclinic tangency in the orientat ion- 
reversing maps will be reported elsewhere. (19) 
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